You're been inactive for a while. For security reason, we'll automatically sign you out from our website. Please Click "Login" to extend your session
Access your patient history, lab results, future appointments and more.
Login via mobile number is currently unavailable. Our apologies for the inconvenience.
New to Bumrungrad? Create Account
Explore the latest news and easily book appointments with our world-class doctors.
Already have an account? Log In
Radioimmunoassay (RIA)
The onset of autoimmune diabetes mellitus (type 1 diabetes mellitus) is preceded (and accompanied) by the appearance of autoantibodies to a variety of pancreatic islet cell antigens in serum, including insulin. The level of these autoantibodies is generally low and may even fall during follow-up. In genetically predisposed, but disease-free, individuals (first degree relatives of patients with type 1 diabetes or individuals with permissive HLA alleles), detection of multiple islet cell autoantibodies is a strong predictor for subsequent development of type I diabetes.
Once type 1 diabetes has become fully manifest, insulin autoantibody levels usually fall to low or undetectable levels. However, after insulin therapy is initiated, autoantibody production may recur as a memory response. Insulin autoantibody production is more common when therapeutic insulin of animal origin is used (rarely used in contemporary practice). Larger therapeutic doses may be required because of antibody-induced insulin resistance.
Insulin antibodies may be found in nondiabetic individuals complaining of hypoglycemic attacks. In this setting their presence can be an indicator of "factitious hypoglycemia" due to the surreptitious injection of insulin, rather than to a clinical problem (eg, insulinoma). However, insulin autoantibodies in nondiabetic subjects can occasionally develop without exposure to exogenous insulin and may rarely become a cause of episodic hypoglycemia. Anti-idiotypic autoantibodies against insulin autoantibodies have been demonstrated in some cases. Interaction of these antibodies with insulin autoantibodies could displace bound insulin from the insulin autoantibodies, resulting in hypoglycemia.
< or =0.02 nmol/L
Reference values apply to all ages.
Seropositivity (> or =0.03 nmol/L) in a patient never treated with insulin is consistent with predisposition to type 1 diabetes. Seropositivity is not as informative of type 2 diabetes status as other islet cell antibodies in patients who are receiving (or have received) insulin therapy because this antibody can arise secondary to therapy. It is thought that high levels of insulin autoantibodies might contribute to insulin resistance.
A family history of type 1 diabetes, other organ-specific autoimmunity and a diabetes-permissive HLA phenotype strengthens the prediction of type 1 diabetes development. The detection of multiple islet cell antibodies is indicative of the likely development of future type 1 diabetes.
In patients presenting with hypoglycemia, the presence of insulin autoantibodies may indicate surreptitious insulin administration or, rarely, insulin autoantibody-related hypoglycemia. The differential diagnosis cannot be made on the basis of insulin autoantibody detection alone. C-peptide and insulin measurements are always required in addition to insulin autoantibody measurements in the diagnosis of hypoglycemia.